Wiki-учебник
Что такое Wiki-учебник?МатематикаРусский языкГеометрияФизикаАнглийский языкЛитератураГеографияОбществознаниеИстория
Поиск по сайтуРеклама от партнёров: |
Главная > 
Wiki-учебник > 
Математика > 11 класс > Понятие о дифференциальных уравнениях: примеры использования уравнений
Понятие о дифференциальных уравнениях
В ходе решения различных практических задач возникают уравнения, которые связывают производные некоторой функции, саму функцию и независимую переменную. Уравнения, которые помимо функций включают в себя еще и производные этих функций, называются дифференциальными уравнениями. Например, рассмотрим второй закон Ньютона. Согласно нему, при движении материальной точки постоянной массы по прямой будет спрвдлива следующая формула F = m*a, где F – сила, которая вызывает движение, а – ускорение точки. Положим, что сила зависит тольк от времени, тогда F = F(t). Как уже известно, ускорение есть вторая производная от координаты по времени (a(t) = x’’(t). Тогда соединив все воедино, получаем дифференциальное уравнение относительно x(t): F(t) = m*x’’(t). Либо x’’(t) = F(t)/m. Решение уравнений:Для решения такого уравнения сначала найдем x‘(t), как первообразную функции F(t)/m. После этого сможем найти x(t), как первообразную, от полученного результата x’(t) = v(t). При интегрировании у нас на каждом шаге появятся по постоянной, то есть общее решение будет зависеть от двух произвольных постоянных. Чтобы их найти, обычно задают некоторую координату и скорость в определенный момент времени t. Помимо задач описанных выше, в физике, технике, биологии и в ряде социальных наук многие задачи сводятся к нахождению функций, удовлетворяющих следующему дифференциальному уравнению: f'(x) = k*f(x), где k - некоторая константа. Смысл этого дифференциального уравнения состоит в том, что скорость изменения функции в некоторой точке х будет пропорциональна значению функции в этой точке. Исходя из формулы производной показательной функции можно установить, что решением этого уравнения является любая функция вида f(x) = C*e(k * x), где С – некоторая постоянная. Так как в выборе константы С нас никто не ограничивает, то следует полагать, что дифференциальное уравнение такого вида имеет бесконечно много решений. А так как дифференциальное уравнение такого вида имеет бесконечно много решений, часто бывает необходимо выделить какое-то одно решение. Для этого вводят определенные начальные условия. Уравнениями такого типа описывается, например, период полураспада радиоактивного вещества. Дифференциальные уравнения - это очень мощный математический аппарат. Во многих математически моделях различных систем используются дифференциальные уравнения. Например, моделирование простейших боевых действий и т.д. Нужна помощь в учебе?Предыдущая тема: Производная и первообразная логарифмической функции: примеры и алгоритм Следующая тема:   Точки и прямые: понятие отрезка и их свойства
|