Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель


Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 10 класс > Периодичность тригонометрических функций: четные и нечетные

Периодичность тригонометрических функций

 

Зависимость переменной y от переменно x, при которой каждому значению х соответствует единственное значение y называется функцией. Для обозначения используют запись y=f(x). У каждой функции существует ряд основных свойств, таких как монотонность, четность, периодичность и другие.

Свойства четности и периодичности

Рассмотрим подробнее свойства четности и периодичности, на примере основных тригонометрических функций: y=sin(x),y=cos(x), y=tg(x), y=ctg(x).

Функция y=f(x) называется четной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Значение функции в точке х, принадлежащей области определения функции должно равняться значению функции в точке -х. То есть для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = f(-x).

Если построить график четной функции, он будет симметричен относительно оси Оу.

Например, тригонометрическая функция y=cos(x) является четной.

Свойства нечетности и периодичности

Функция y=f(x) называется нечетной, если она удовлетворяет следующим двум условиям:

1. Область определения данной функции должна быть симметрична относительно точки О. То есть если некоторая точка a принадлежит области определения функции, то соответствующая точка -a тоже должна принадлежать области определения заданной функции.

2. Для любой точки х, из области определения функции должно выполняться следующее равенство f(x) = -f(x).

График нечетной функции симметричен относительно точки О – начала координат.

Например, тригонометрические функции y=sin(x), y=tg(x), y=ctg(x) являются нечетными.

Периодичность тригонометрических функций

Функция у=f (х)называется периодической, если существует некоторое число Т !=0 (называемое периодом функции у=f (х) ), такое что при любом значении х, принадлежащем области определения функции, числа х+Т и х-Т также принадлежат области определения функции и выполняется равенство f(x)=f(x+T)=f(x-T).

Следует понимать, что если Т - период функции, то число k*T, где k любое целое число отличное от нуля, также будет являться периодом функции. Исходя из вышесказанного, получаем, что любая периодическая функции имеет бесконечно много периодов. Чаще всего разговор ведется о наименьшем периоде функции.

Тригонометрические функции sin(x) и cos(x) являются периодическими, с наименьшим периодом равным 2*π.

Тригонометрические функции tg(x) и ctg(x) являются периодическими, с наименьшим периодом равным π.

Нужна помощь в учебе?



Предыдущая тема: Тригонометрические функции: свойства и их графики
Следующая тема:   Свойства тригонометрических функций: гармонические колебания
Нравится Нравится


Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Понятие об обратной функции
Программа по математике за 11 класс
Сумма бесконечной геометрической прогрессии при |q|<1
Программа по математике за 10 класс
Как умножить многочлен на многочлен

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История