Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель


Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 9 класс > Формулы приведения: правила и графики + примеры

Формулы приведения

 

Для использования формул приведения существует два правила.

1. Если угол можно представить в виде (π/2 ±a) или (3*π/2 ±a), то название функции меняется sin на cos, cos на sin, tg на ctg, ctg на tg. Если же угол можно представить в виде (π ±a) или (2*π ±a), то название функции остается без изменений.

Посмотрите на рисунок ниже, там схематично изображено, когда следует менять знак, а когда нет.

2. Правило «каким ты был, таким ты и остался».

Знак приведенной функции остается прежним. Если исходная функция имела знак «плюс», то и приведенная функция имеет знак «плюс». Если исходная функция имела знак «минус», то и приведенная функция имеет знак «минус».

На рисунке ниже представлены знаки основных тригонометрических функций в зависимости от четверти.

Вычислить Sin(150˚)

Воспользуемся формулами приведения:

Sin(150˚) находится во второй четверти, по рисунку видим что знак sin в этой четверти равен +. Значит у приведенной функции тоже будет знак «плюс». Это мы применили второе правило.

Теперь 150˚ = 90˚ +60˚. 90˚ это π/2. То есть имеем дело со случаем π/2+60, следовательно по первому правилу меняем функцию с sin на cos. В итоге получаем Sin(150˚) = cos(60˚) = ½.

При желании все формулы приведения можно свести в одну таблицу. Но все же легче запомнить эти два правила и пользоваться ими.

Нужна помощь в учебе?



Предыдущая тема: Применение основных тригонометрических формул к преобразованию выражений
Следующая тема:   Формулы сложения основных тригонометрических функций
Нравится Нравится


Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Периодичность тригонометрических функций
Основное свойство первообразной
Разложение многочлена способом группировки
Умножение разности двух выражений на их сумму
От чего зависит вид графика функции

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История