Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель


Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 7 класс > Решение систем уравнений: способ сложения + примеры

Способ сложения в решении систем уравнений

 

Системой линейных уравнений с двумя неизвестными - это два или несколько линейных уравнений, для которых необходимо найти все их общие решения. Мы будем рассматривать системы из двух линейных уравнений с двумя неизвестными. Общий вид системы из двух линейных уравнений с двумя неизвестными представлен на рисунке ниже:

{ a1*x + b1*y = c1,
{ a2*x + b2*y = c2

Здесь х и у неизвестные переменные, a1,a2,b1,b2,с1,с2 – некоторые вещественные числа. Решением системы двух линейных уравнений с двумя неизвестными называют пару чисел (x,y) такую, что если подставить эти числа в уравнения системы, то каждое из уравнений системы обращается в верное равенство. Существует несколько способов решения системы линейных уравнений. Рассмотрим один из способов решения системы линейных уравнений, а именно способ сложения. 

Алгоритм решения способом сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными способом сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.

2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным

3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.

4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.

5. Сделать проверку решения.

Пример решения способом сложения

Для большей наглядности решим способом сложения следующую систему линейных уравнений с двумя неизвестными:

{3*x + 2*y = 10;
{5*x + 3*y = 12;

Так как, одинаковых коэффициентов нет ни у одной из переменных, уравняем коэффициенты у переменной у. Для этого умножим первое уравнение на три, а второе уравнение на два.

{3*x+2*y=10 |*3
{5*x + 3*y = 12 |*2

Получим следующую систему уравнений:

{9*x+6*y = 30;
{10*x+6*y=24;

Теперь из второго уравнения вычитаем первое. Приводим подобные слагаемые и решаем полученное линейное уравнение.

10*x+6*y – (9*x+6*y) = 24-30; x=-6;

Полученное значение подставляем в первое уравнение из нашей исходной системы и решаем получившееся уравнение.

{3*(-6) + 2*y =10;
{2*y=28; y =14;

Получилась пара чисел x=6 и y=14. Проводим проверку. Делаем подстановку.

{3*x + 2*y = 10;
{5*x + 3*y = 12;

{3*(-6) + 2*(14) = 10;
{5*(-6) + 3*(14) = 12;

{10 = 10;
{12=12;

Как видите, получились два верных равенства, следовательно, мы нашли верное решение.

Ответ: (6, 14)

Нужна помощь в учебе?



Предыдущая тема: Решение систем уравнений: способ подстановки + примеры
Следующая тема:   Решение задач с помощью систем уравнений: общая схема решения
Нравится Нравится


Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Понятие о дифференциальных уравнениях
Программа по математике за 10 класс
Решение неравенств второй степени с одной переменной
Производная и первообразная показательной функции
Степень с рациональным показателем

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История