Wiki-учебник
Что такое Wiki-учебник?МатематикаРусский языкГеометрияФизикаАнглийский языкЛитератураГеографияОбществознаниеИстория
Поиск по сайтуРеклама от партнёров: |
Главная > 
Wiki-учебник > 
Математика > 8 класс > Иррациональные числа: понятие и особенности
Иррациональные числа
Множество всех натуральных чисел обозначают буквой N. Натуральные числа, это числа которые мы используем для счета предметов: 1,2,3,4, … В некоторых источниках, к натуральным числам относят также число 0. Множество всех целых чисел обозначается буквой Z. Целые числа это все натуральные числа, нуль и отрицательные числа: -1,-2,-3, -4, … Теперь присоединим к множеству всех целых чисел множество всех обыкновенных дробей: 2/3, 18/17, -4/5 и та далее. Тогда мы получим множество всех рациональных чисел. Множество рациональных чиселМножество всех рациональных чисел обозначается буквой Q. Множество всех рациональных чисел (Q) - это множество, состоящее из чисел вида m/n, -m/n и числа 0. В качестве n,m может выступать любое натуральное число. Следует отметить, что все рациональные числа, можно представить в виде конечной или бесконечной ПЕРЕОДИЧЕСКОЙ десятичной дроби. Верно и обратное, что любую конечную или бесконечную периодическую десятичную дробь можно записать в виде рационального числа. А как же быть например с числом 2.0100100010… ? Оно является бесконечно НЕПЕРЕОДИЧСЕКОЙ десятичной дробью. И оно не относится к рациональным числам. В школьном курсе алгебры изучаются только вещественные (или действительные) числа. Множество всех действительных чисел обозначается буквой R. Множество R состоит из всех рациональных и всех иррациональных чисел. Понятие иррациональных чиселИррациональные числа – это все бесконечные десятичные непериодические дроби. Иррациональные числа не имеют специального обозначения. Например, все числа полученные извлечением квадратного корня из натуральных чисел, не являющихся квадратами натуральных чисел - будут иррациональными. (√2, √3, √5, √6, и т.д.). Но не стоит думать, что иррациональные числа получаются только извлечением квадратных корней. Например, число «пи» тоже является иррациональным, а оно получено делением. И как вы не старайтесь, вы не сможете получить его, извлекая квадратный корень из любого натурального числа. Нужна помощь в учебе?Предыдущая тема: Рациональные числа: определение, сумма, разность, умножение, деление Следующая тема:   Квадратные корни: арифметический квадратный корень
|