Wiki-учебник
Что такое Wiki-учебник?МатематикаРусский языкГеометрияФизикаАнглийский языкЛитератураГеографияОбществознаниеИстория
Поиск по сайтуРеклама от партнёров: |
Главная > 
Wiki-учебник > 
Математика > 7 класс > Функции y = x^2 и y = х^3: их графики, функции и свойства
Квадратичная и кубическая функции
Функция y=x^2 называется квадратичной функцией. Графиком квадратичной функции является парабола. Общий вид параболы представлен на рисунке ниже. Квадратичная функцияРис 1. Общий вид параболы Как видно из графика, он симметричен относительно оси Оу. Ось Оу называется осью симметрии параболы. Это значит, что если провести на графике прямую параллельную оси Ох выше это оси. То она пересечет параболу в двух точках. Расстояние от этих точек до оси Оу будет одинаковым. Ось симметрии разделяет график параболы как бы на две части. Эти части называются ветвями параболы. А точка параболы которая лежит на оси симметрии называется вершиной параболы. То есть ось симметрии проходит через вершину параболы. Координаты этой точки (0;0). Основные свойства квадратичной функции1. При х =0, у=0, и у>0 при х0 2. Минимальное значение квадратичная функция достигает в своей вершине. Ymin при x=0; Следует также заметить, что максимального значения у функции не существует. 3. Функция убывает на промежутке (-∞;0] и возрастает на промежутке [0;+∞). 4. Противоположным значениям х соответствует одинаковые значения y. Кубическая функцияФункция y=x^3 называется кубической функцией. Графиком кубической функции называется кубическая парабола. Общий вид параболы представлен на рисунке ниже. Если график квадратичной функции был симметричен оси Оу, то график кубической параболы симметричен относительно начала координат, то есть точки (0;0). Свойства кубической функцииПеречислим основные свойства кубической функции
Нужна помощь в учебе?Предыдущая тема: Умножение одночленов и возведение одночлена в степень + примеры Следующая тема:   Абсолютная погрешность: понятие, как вычислить + примеры
|