Wiki-учебник
Что такое Wiki-учебник?МатематикаРусский языкГеометрияФизикаАнглийский языкЛитератураГеографияОбществознаниеИстория
Поиск по сайтуРеклама от партнёров: |
Главная > 
Wiki-учебник > 
Математика > 11 класс > Логарифмическая функция: основные свойства и графики
Логарифмическая функция
Функцию вида y = loga(x), где a любое положительное число не равное единице, называют логарифмической функцией с основанием а. Здесь и далее для обозначения логарифма мы будем использовать следующую нотацию: loga(b) - данная запись будет обозначать логарифм b по основанию а. Основные свойства логарифмической функции:1. Областью определения логарифмической функции будет являться все множество положительных вещественных чисел. Для краткости его еще обозначают R+. Очевидное свойство, так как каждое положительное число имеет логарифм по основанию а. 2. Областью значения логарифмической функции будет являться все множество вещественных чисел. 3. Если основание логарифмической функции a>1, то на всей области определения функции возрастает. Если для основания логарифмической функции выполняется следующее неравенство 0<a 4. График логарифмической функции всегда проходит через точку (1;0). 5. Возрастающая логарифмическая функция, будет положительной при x>1, и отрицательной при 0<х<1. 6. Убывающая логарифмическая функция, будет отрицательной при х>1, и положительной при 0<x<1: На следующем рисунке представлен график убывающей логарифмической функции - (0<a<1): 7. Функция не является четной или нечетной. Логарифмическая функция – функция общего вид. 8. Функция не имеет точек максимума и минимума. Если построить в одной оси координат показательную и логарифмическую функции с одинаковыми основаниями, то графики этих функций будут симметричны относительно прямой y = x. Данное утверждение показано на следующем рисунке. Изложенное выше утверждение будет справедливо, как для возрастающих, так и для убывающих логарифмических и показательных функций. Рассмотрим пример: найти область определения логарифмической функции f(x) = log8(4 - 5*x). Исходя из свойств логарифмической функции, областью определения является все множество положительных вещественных чисел R+. Тогда заданная функция будет определена для таких х, при которых 4 - 5*x>0. Решаем это неравенство и получаем x<0.8. Таким образом, получается, что областью определения функции f(x) = log8(4 - 5*x) будет являться промежуток (-∞;0.8) Нужна помощь в учебе?Предыдущая тема: Логарифмы и их свойства: определение и алгоритм решения Следующая тема:   Понятие об обратной функции: график функции и теорема
|