Вход
Регистрация



E-mail: 
Пароль: 
Забыли пароль?
Номер телефона: 
E-mail: 
Зарегистрироваться
Закрыть панель
Заполните следующие поля:

Предмет:
Контактный телефон:
Ваши пожелания:
Отправить заявку
Закрыть панель


Оставить заявку на
подбор репетитора

Wiki-учебник

Поиск по сайту

Реклама от партнёров:

Главная >  Wiki-учебник >  Математика > 6 класс > Наибольший общий делитель (НОД): определение, как найти, схема

Наибольший общий делитель (НОД)

 

Решим задачу. У нас есть  два типа печенья. Одни шоколадные, а другие простые. Шоколадных 48 штук, а простых 36. Необходимо составить из этого печенья максимально возможное число подарков, при этом надо использовать их все.

Для начала выпишем все делители каждого из этих двух чисел, так как оба эти числа должны делиться на количество подарков.

Получаем, 

  • 48: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
  • 36: 1, 2, 3, 4, 6, 9, 12, 18, 36.

Найдем среди делителей общие, которые есть как у первого, так и у второго числа.

Общими делителями будут: 1, 2, 3, 4, 6, 12.

Наибольшим из всех общих делителей является число 12. Это число называют наибольшим общим делителем чисел 36 и 48.

Исходя из полученного результата, можем заключить, что из всего печенья можно составить 12 подарков. В одном таком подарке будет 4 шоколадных печенья и 3 обычных печенья.

Определение наибольшего общего делителя

  • Наибольшее натуральное число, на которое делятся без остатка два числа a и b, называют наибольшим общим делителем этих чисел.

Иногда для сокращения записи используют аббревиатуру НОД.

Некоторые пары чисел имеют в качестве наибольшего общего делителя единицу. Такие числа называют взаимно простыми числами. Например, числа 24 и 35. Имеют НОД =1.

Как найти наибольший общий делитель

Для того чтобы найти наибольший общий делитель не обязательно выписывать все делители данных чисел.

Можно поступить иначе. Сначала разложить на простые множители оба числа.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Теперь из множителей, которые входят в разложение первого числа, вычеркнем все те, которые  не входят в разложение второго числа. В нашем случае это две двойки.

  • 48 = 2*2*2*2*3,
  • 36 = 2*2*3*3.

Останутся множители 2, 2 и 3. Их произведение равно 12. Это число и будет являться наибольшим общим делителем чисел 48 и 36. 

Это правило можно распространить на случай с тремя, четырьмя и т.д. числами.

Общая схема нахождения наибольшего общего делителя

  • 1. Разложить числа на простые множители.
  • 2. Из множителей,  входящих в разложение одного из этих чисел, вычеркнуть те, которые не входят в разложение других чисел.
  • 3. Посчитать произведение оставшихся множителей.

Нужна помощь в учебе?



Предыдущая тема: Простые и составные числа: разложение чисел на простые множители
Следующая тема:   Наименьшее общее кратное (НОК): определение, как найти, общая схема
Нравится Нравится


Общеобразовательные предметы:


Математика
Физика
Информатика
Химия
История
География
Биология
Литература
Обществознание
Экономика

Иностранные языки:


Английский язык
Русский язык
Немецкий язык
Французский язык
Испанский язык
Португальский язык
Итальянский язык
Китайский язык
Японский язык
Норвежский язык

В этом разделе:


Квадрат суммы и разности двух выражений
Преобразование целого выражения в многочлен
Понятие о дифференциальных уравнениях
Решения уравнения x^2 = a
Решение простейших тригонометрических неравенств

Wiki-учебник:


Что такое Wiki-учебник?
Математика
Русский язык
Геометрия
Физика
Английский язык
Литература
География
Обществознание
История